数列求和怎么求(数列求和怎么求公比)

大家好,今天来给大家分享数列求和怎么求的相关知识,通过是也会对数列求和怎么求公比相关问题来为大家分享,如果能碰巧解决你现在面临的问题的话,希望大家别忘了关注下本站哈,接下来我们现在开始吧! 数列求和的...

大家好,今天来给大家分享数列求和怎么求的相关知识,通过是也会对数列求和怎么求公比相关问题来为大家分享,如果能碰巧解决你现在面临的问题的话,希望大家别忘了关注下本站哈,接下来我们现在开始吧!

1数列求和的基本方法和技巧

1 数列求梁陪和的基本方法和技巧

一.公式法

如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.注意等比数列公示q的取值要橡段蠢分q=1和q≠1.

二.倒序相加法

如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.

三.错位相减法

如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.

四.裂项相消法

把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.

五.分组求和法

若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.

六.并项求和法

一个数列的前n项和中,若可两两结合求解,则称之为并项求和法.形如 类型,可采用两项合并求解.

数列知识整合

1、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数燃陪列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题。

2、在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力。

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

3、培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法。

1 数列求和例题讲解

2数列求和的几种方法

1.

公式法:

等差数列求和公式:

Sn=n(a1+an)/2=na1+n(n-1)d/2

等比数列求和公式:

Sn=na1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)

(q≠1)

2.错位相减法

适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式

{

an

}、{

bn

}分别是等差数列和等比数列.

Sn=a1b1+a2b2+a3b3+...+anbn

例如:

an=a1+(n-1)d

bn=a1·q^(n-1)

Cn=anbn

Tn=a1b1+a2b2+a3b3+a4b4....+anbn

qTn=

a1b2+a2b3+a3b4+...+a(n-1)bn+anb(n+1)

Tn-qTn=

a1b1+b2(a2-a1)+b3(a3-a2)+...bn[an-a(n-1)]-anb(n+1)

Tn(1-q)=a1b1-anb(n+1)+d(b2+b3+b4+...bn)

=a1b1-an·b1·q^n+d·b2[1-q^(n-1)]/(1-q)

Tn=上述式子/(1-q)

3.倒序相加法

这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)

Sn

=a1+

a2+

a3+......

+an

Sn

=an+

a(n-1)+a(n-3)......

+a1

上下相加

得到2Sn

Sn=

(a1+an)n/2

4.分组法

有一类数列,既不是等差数列,也不是等扰胡比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.

例如:an=2^n+n-1

5.裂项法

适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。

常用公式:

(1)1/n(n+1)=1/n-1/(n+1)

(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]

(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]

(4)1/(√a+√b)=[1/(a-b)](√a-√b)

(5)

n·n!=(n+1)!-n!

[例]

求数列an=1/n(n+1)

的前n项和.

解:an=1/n(n+1)=1/n-1/(n+1)

(裂项)

则Sn

=1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)=

1-1/(n+1)=

n/(n+1)

小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。

注意:

余下的项具有如下的特点

1余下的项前后的位置前后是对称的。

2余下的项前后猛李信的正负性是相反的。

6.数学归纳法

一般地,证明一个与正整数n有关的命题,有如下步骤:

(1)证明当n取第一个值时命题成立;

(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。

例:求证:1×2×3×4

+

2×3×4×5

+

3×4×5×6

+

……

+

n(n+1)(n+2)(n+3)

=

[n(n+1)(n+2)(n+3)(n+4)]/5

证明:

当n=1时,有:

1×2×3×4

+

2×3×4×5

=

2×3×4×5×(1/5

+1)

=

2×3×4×5×6/5

假设命题在n=k时成立,于是:

1×2×3×4

+

2×3×4×5

+

3×4×5×6

+

……

+

k(k+1)(k+2)(k+3)

=

[k(k+1)(k+2)(k+3)(k+4)]/5

则当n=k+1时有:

1×2×3×4

+

2×3×4×5

+

3×4×5×6

+

……

+

(k+1)(k+2)(k+3)(k+4)

=

1×2×3×4

+

2×3×4*5

+

3×4×5×6

+

……

+

k(k+1)(k+2)(k+3)

+

(k+1)(k+2)(k+3)(k+4)

=

[k(k+1)(k+2)(k+3)(k+4)]/5

+

(k+1)(k+2)(k+3)(k+4)

=

(k+1)(k+2)(k+3)(k+4)*(k/5

+1)

=

[(k+1)(k+2)(k+3)(k+4)(k+5)]/5

即n=k+1时原等式仍然成立,归纳得证

7.通项化归

先将通项公式进行化简,再进行求和。

如:求数列1,1+2,1+2+3,1+2+3+4,……的前n项和。此时先将an求出,再利用分组等方法求和。

8.并项求和:

例枝轮:1-2+3-4+5-6+……+(2n-1)-2n

(并项)

求出奇数项和偶数项的和,再相减。

3数列求和的七种方法

如下:

1、公式法。

公式法是解一元二次方程的一种方法,也指套用公式计算某事物。

另外还有配方法、十字相乘法、直接开平方法与分解因式法等解方程的方法。公式表达了用配方法解一般的一元二次方程的结果。

根据因式分解与整式乘法的关系,把各项系数直接带入求根公式,可避免配方过程而直接得出根,这种解一元二次方程的方法叫做公式法。

2、裂项桐滚相消法。

裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。

3、 错位相减法。

适用于通项公式为等差的一次函数乘以等比的数列形式{an}、{bn}分别是等差数列和等比数列。

4、分解法。

数学中用以求解高次一元方程的一种方法。把方程的一侧的数(包括未知数),通过移动使其值化成0,把方程的另一侧各项化成若干因式的乘积,然后分别令各因式等于0而求出其解的方法叫因式分解法。

5、分组求和法。

分组世桐求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。

6、倒序相加法。

等差数列:首项为a1,末项为an,公差为d,那么等差数列求和公式为Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。

7、乘公比错项相减(等差×等比)。

这种方法是在推导等比数列的前搜轮坦n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。类似于错位相减法。

4数列求和有哪五种方法?

一、利用常用求和公式求和

利用下列常用求和公式求和是数列求和的最基本最重要的方法.

1、 等差数列求和公式:

2、 等比数列求和公式:

自然数方幂和公式:

3、 4、

5、

[例] 求和1+x2+x4+x6+…x2n+4(x≠0)

∴该数列是首项为1,公比为x2的等比数列而且有n+3项

当x2=1 即x=±1时 和为n+3

评注:

(1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x是否为0进行讨论.

(2)要弄清数列共有多少项,末项不一定是第n项.

对应高考考题:设数列1,(1+2),…,(1+2+ ),……的前顶和为 ,则 的值.

二、错位相减法求和

错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容.需要我们的学生认真掌握好这种方法.这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an�� bn}的前n项和,其中{ an }、{ bn }分别是等差数列和等比数列.求和时握辩运一般在已知和式的两边都乘以组段梁成这个数列的等比数列的公比 ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法.

[例] 求和:( )………………………①

由题可知,{ }的通项是等差数列{2n-1}的通项与等比数列{ }的通项之积

设 ……………………….② (设制错位)

①-②得 (错位相减)

再利用等比数列的求和公式得:

注意、1 要考虑 当公比x为值1时为特殊情况

2 错位相减时要注意末项

此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘.

对应高考考题:设正项等比数列 的首项 ,前n项和为 ,且 .(Ⅰ)求 的通项; (Ⅱ)求 的前n项和 .

三、反序相加法求和

这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个 .

[例] 求证:

证明:设 …………………………..①

把①式右边倒转过来得

(反序)

又由 可得

…………..……..②

①+②得 (反序相加)

四、分组法求和

有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.

若数列 的通项公式为 ,其中 中一个是等差数列,另一个是等比数列,求和时一般用分组结合法.

[例灶棚]:求数列 的前n项和;

分析:数列的通项公式为 ,而数列 分别是等差数列、等比数列,求和时一般用分组结合法;

[解] :因为 ,所以

(分组)

前一个括号内是一个等比数列的和,后一个括号内是一个等差数列的和,因此

五、裂项法求和

这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:

(1) (2)

(3) (4)

(5)

[例] 求数列 的前n项和.

设 (裂项)

则 (裂项求和)

小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了.只剩下有限的几项.

注意:余下的项具有如下的特点

1余下的项前后的位置前后是对称的.

2余下的项前后的正负性是相反的.

[练习] 在数列{an}中,,又 ,求数列{bn}的前n项的和.

5怎样快速求一个数列的和?

(乘上公比)再用错位相减法。

形如An=BnCn,其中{Bn}为等差数列,{Cn}为等比数列;分别列出Sn,再把所有式子同时乘以等闭森比数列的公比q,即q·Sn;然后错开一位,两个式子相减。这种数列求和方法叫做错位相减法。

【典例】:求和Sn=1+3x+5x2+7x3+…+(2n-1)·xn-1(x≠0,n∈N*)

当x=1时,Sn=1+3+5+…+(2n-1)=n2

当x≠1时,Sn=1+3x+5x2+7x3+…+(2n-1)xn-1

∴xSn=x+3x2+5x3+7x4+…+(2n-1)xn

两式相减得(1-x)Sn=1+2(x+x2+x3+x4+…+xn-1)-(2n-1)xn

扩展资料:

每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差轿档亩,公差常用字母d表示。

例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。

一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为蠢银底q的对数。等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)。在等比数列中,首项A1与公比q都不为零。

参考资料来源:百度百科--等差数列

参考资料来源:百度百科--等比数列

关于数列求和怎么求和数列求和怎么求公比的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

上一篇:彭加木是被队友吃了(彭加木是被队友杀死的嘛)
下一篇:将军范怎么助力兑换(将军范现在还能玩不)

为您推荐